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Abstract

Optimal design problems for structural elements in equilibrium often come in pairs in which the cost function for
one problem becomes a constraint for the second. In particular, the problem of minimizing structural volume or
weight under size and stress constraints has a dual in which potential energy is minimized for ®xed volume of

material. These dual problems are solved here for a linearly elastic rod hanging from a rigid support. The design
variable is the cross-sectional area of the rod.
The method used is the Maximum Principle of Pontryagin and Hestenes, rather than the function space methods

used by others for similar problems. # 2000 Elsevier Science Ltd. All rights reserved.
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1. Two optimal design problems for elastic rods under axial gravitational load

Optimal design problems for structural elements in equilibrium often come in pairs in which the cost
function for one problem becomes a constraint for the second. In particular, the problem of minimizing
structural volume or weight under size and stress constraints has a dual in which potential energy is
minimized for ®xed volume of material. These dual problems are solved here for a linearly elastic rod
hanging from a rigid support. The design variable is the cross-sectional area of the rod.

The equilibrium problem for given area distribution is easy to state and easy to solve formally. The
undeformed length L, Young's modulus E, weight per unit volume rg, and a piecewise continuous
distribution of cross-sectional area A(X ) are given, where X is the vertically downward coordinate axis
through the centroids of the cross sections. The loads are the rod's weight per unit length and the
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(unknown) end forces necessary to maintain the displacement of the lower end at a known value D. The
axial displacement U(X ) and the axial force P(X ), both continuous functions, are found together with
the axial strain E(X ) from the equations

dU

dX
� E�X �,

P�X � � EA�X �E�X �,

dP

dX
� rgA�X � � 0: �1a�

These hold at all points of continuity of A(X ) in 0 < X < L, with E(X ) discontinuous where A is. The
displacement U satis®es boundary conditions

U�0� � 0, U�L� � D: �1b�
This problem has the formal solution

P�X � � EA�X �E�X � � P�0� ÿ rg
�X
0

A�Y �dY

U�X � � P�0�
E

�X
0

dY

A�Y � ÿ
rg
E

�X
0

1

A�Y �
�Y
0

A�Z �dZ dY �2a�

with the value of P(0) determined by the boundary condition U(L )=D:

P�0� � ED�L
0

dY

A�Y �
�

rg
�L
0

1

A�Y �
�Y
0

A�Z �dZ dY�L
0

dY

A�Y �
: �2b�

Note that the solution (2) scales in a special way with A(X ): the axial force P scales linearly with the
area but U, E, and s=EE remain unchanged. That is, if {P, U, E, s } are the solutions for the choice
A(X ), then the solutions {P�, U�, E�, s�} for the choice A�(X )=KA(X ) will be {KP, U, E, s }.
The solution is equally well characterized by the Principle of Minimum Potential Energy. The second-

order di�erential equation governing the displacement at equilibrium then appears as the Euler±
Lagrange equation for the functional

P�U�X �� �
�L
0

A�X �
�
1

2
EE2�X � ÿ rgU�X �

�
dX �3�

assuring a stationary value for P among all displacement ®elds satisfying the displacement boundary
conditions (1b) and with E=dU/dX. Here A(X ) is regarded as given.

Two optimal design problems for such a column are solved here. The design variable is the section
area A(X ). The ®rst design problem is the minimization of the total volume

V �
�L
0

A�X �dX �4�

W.H. Warner / International Journal of Solids and Structures 37 (2000) 2709±27262710



of a column ®xed at both ends and in equilibrium under its own weight [Eqs. (1) as constraints with
D=0] and subject to inequality constraints on both section size and axial stress s(X )=P(X )/A(X ):

A1RA�X �RA2, j s�X � jRs0: �5�

The second problem is the minimization of P [Eq. (3)] considered as a functional of U, A and E subject
to the di�erential equation constraint

dU

dX
� E�X � �6�

from the set (1a), the boundary conditions (1b) on U, the inequality constraints

A1RA�X �RA2 �7�

on section size and the integral (`isoperimetric') equality constraint of prescribed total volume:�L
0

A�X �dX � V0: �8�

We must have A1LRV0 RA2L for consistency.
The ®rst design problem involves a loading case not treated by Velte and Villaggio (1982). They solve

the problem of ®nding the distribution of cross-sectional area that minimizes the total volume of a
linearly elastic rod ®xed at its ends and loaded axially with a known load along its length. Bounds on
section size and on axial stress are prescribed. By constructing minimizing sequences in the space of L 2

functions, they show that the problem has at least one solution if the set of admissible designs satisfying
the constraints is nonempty. They show that no, one, or in®nitely many solutions may exist for a rod
loaded with a concentrated force at its midpoint, depending on the choice of constraint parameters.

The inde®nite integral of the given axial load plays a critical part in their argument. However, if the
axial load arises from the weight on the bar itself, then it and its integral will also depend on the design
variable. That is the problem considered here.

The second design problem is analogous to the problem solved by Fosdick and Royer-Carfagni (1996)
(see also Fosdick et al., 1996) for two-phase mixtures in stressed bars. By replacing A(X ) by a di�erent
design variable c(X ) where

A�X � � A2c�X � � A1�1ÿ c�X ��, 0Rc�X �R1,

A(X ) takes on the form of the density r in Fosdick and Royer-Carfagni (1996), Eq. (2.2). The methods
used there could then be followed and would indicate that discontinuous solutions occur with two or
three subregions in which A takes on its extreme values alternately, depending on the parameters. As
stated in Fosdick and Royer-Carfagni (1996), the essential di�culty arises because of the nonconvexity
of the strain energy density function (1/2)EAE 2 in the pair of quantities E and c, where the sti�ness
function S=EA depends on c. Whereas they treat this di�culty by constructing a related problem
having the same minimizer from the lower convex envelope of the strain energy density, here the
solution is found by direct computation utilizing the Maximum Principle (Pontryagin et al., 1962;
Hestenes, 1980). The same method will be used for the solution of the minimum volume problem.

Section 2 applies the Maximum Principle to the minimum volume problem and summarizes the
solution procedure. Section 3 does the same for the minimum potential energy problem. Most of the
details of the computations are relegated to Appendices. Similar results for Euler±Bernouilli beams will
be reported in a separate paper.
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2. The minimum volume problem for the rod under gravity

Part of the solution of the minimum problem [Eqs. (1±5)] for the ®xed±®xed rod requires little
computation. If a lower bound A1 on section size is imposed on admissible designs, then A(X )
identically equal to A1 will give the minimum attainable volume A1L and will satisfy trivially any upper
bound constraint on A. Because of the scaling property noted after Eq. (2), all uniform sections give the
same stress distribution when D=0:

s�X � � rgL
2

�
1ÿ 2X

L

�
:

Maximum stress magnitude occurs at the ends and is (rgL )/2. Therefore the uniform section A1 is the
unique optimizer as long as the rod is short enough:

LR2s0
rg
: �9�

(I note parenthetically that for even a low value of allowable stress such as s0=70 MPa for a heavy
material such as steel (rg = 77 kN/m3) the limiting length is approximately 1.8 km or 1.1 miles. The
engineer's phrase `For all practical purposes . . . ' would seem to be appropriate here.)

When (9) is violated the solution form changes to a three-region solution for A(x ) consisting of
exponentially decaying and growing segments at top and bottom symmetrically placed about a central
segment at minimum size. This solution is valid until the end sections reach maximum allowable size at

rgL
s0
� 2

�
1� ln

�
A2

A1

��
:

No solution exists at greater values of the parameter rgL/s0 since no design exists satisfying all
constraints.

The problem is more easily discussed in nondimensional form. Set

X � Lx, A�X � � A1a�x�, U�X � � Ls0
E

u�x�,

E�X � � s0
E
Z�x�, s�X � � s0t�x�, P�X � � A1s0p�x�:

Then t(x )=Z(x ) and the separate symbol for the nondimensional stress is not needed.
The optimization problem becomes the minimization of�1

0

a�x�dx �10�

subject to

du

dx
� Z�x�, dp

dx
� ÿga�x�, �11a�

u�0� � u�1� � 0, �11b�
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f1 � 1ÿ aR0, �11c�

f2 � aÿ âR0, �11d�

f3 � ÿ1ÿ ZR0, �11e�

f4 � Zÿ 1R0, �11f�

f5 � aZÿ p � 0: �11g�
Here g=(rgL )/s0 and aÃ=A2/A1.

The mathematical formalism showing that di�culties may be expected here requires the computation
of the minors of order 5 of the 5-by-6 regularity matrix for the constraints [Hestenes, 1980, p. 260, Eq.
(4.2)]. Its six minors of order 5 are all zero if one of f1, f2 equals zero at the same location that one f3,
f4 does. Under these conditions a design satisfying all constraints may not exist and Velte and
Villaggio's condition for a well-posed problem may not be met.

Return to the problem of minimizing (2) subject to (3). The necessary conditions in addition to (3) are
obtained by applying the Maximum Principle (Hestenes, 1980, Chapter 6, Theorem 4.1) for `control
problems of Lagrange with inequality constraints'. There are two state variables u(x ) and p(x ) and two
controls a(x ) and Z(x ). If a minimizer {u�(x ), p�(x ), Z�(x ), a�(x )} exists with u� and p� continuous with
piecewise continuous derivatives and h�, a� piecewise continuous on [0,1], then there exist multipliers

l0r0, v�x�, q�x�, ma�x� �a � 1, 2, 3, 4, 5� �12a�
not vanishing simultaneously on the closed interval 0 R x R 1 and a `pre-Hamiltonian' function H(u, p,
v, q, a, Z, ma) de®ned by

H�u, p, v, q, a, Z, m1, m2, m3, m4, m5� � vZ� q�ÿga� ÿ l0aÿ
X5
i�1

mifi �12b�

such that the following conditions hold.

1. The solution multipliers ma (x ) are continuous on each interval of continuity of Z�(x ), a�(x ).
Moreover, they are nonnegative for a=1, 2, 3, 4 with each of these four equal to zero wherever the
corresponding fa function [Eqs. (11c)±(11f)] is strictly less than zero.

2. The solution multipliers v�(x ) and q�(x ) are continuous and satisfy, with u�(x ), p�(x ), Z�(x ), a�(x )
and the ®ve m's, the given di�erential equation constraints in (11a) repeated here

du

dx
� @H

@v
� Z�x�, dp

dx
� @H

@q
� ÿga �13a�

and the additional equations

dv

dx
� ÿ@H

@u
� 0,

dq

dx
� ÿ@H

@p
� m5�x� �13b�

@H

@a
� ÿgq�x� ÿ l0 � m1 ÿ m2 ÿ Zm5 � 0 �13c�
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@H

@Z
� v�x� � m3 ÿ m4 ÿ am5 � 0 �13d�

on each interval of continuity of Z�(x ), a�(x ). The equality constraint (11g) must also hold.
3. The function of H of (12b) evaluated on a minimizer is continuous on the closed interval 0 R x R 1

and satis®es the relation

dH

dx
� @H

@x
� 0 �14�

on each interval of continuity of Z�(x ), a�(x ).
4. The inequality

H�u�, p�, v�, q�, q, Z, 0, 0, 0, 0, 0� � v�Zÿ �gq� � l0�aR �H � sup�H � �15�

holds for all admissible controls Z(x ) and a(x ) on the left side and for the solution controls Z�(x ),
a�(x ) on the right together with the solution values of u�(x ), p�(x ), and the multipliers v�(x ), q�(x ),
l0, l on both sides of (15). The constant H

-
is the value of the supremum of H guaranteed by the

result Eq. (14) since the H function does not depend explicitly on x.

Since the boundary values on u(x ) are given at both ends of the rod, there are no boundary conditions
on v(x ) arising from the standard transversality relations (`natural boundary conditions'). However,
transversality requires

q�0� � q�1� � 0 �16�

since p is not prescribed at the ends.
The multiplier functions m1(x ) and m2(x ) cannot both be positive since both functions f1,2 cannot be

zero simultaneously; similarly both m3(x ) and m4(x ) cannot both be positive since f3,4 cannot be zero
simultaneously. The conditions @H/@a=@H/@Z=0 [Eqs. (13c), (13d)] determine the values of the nonzero
ma (x ), a=1, 2, 3, 4, once the other quantities have been found.

Since the solutions u�(x ), etc., are not known a priori to use in the Maximum-H inequality (15), the
function on the left of (15) is replaced by

~H�a, Z� � vZÿ �gq� 1�a: �17�

Its supremum will be found with respect to the control variables regarding v(x ) and q(x ) as known.
This procedure only determines combinations that give a local supremum and some other condition
must be used to test the candidate for possible global optimality.

Five steps are involved in generating the optimizers. First, the constant value of v(x ) is shown to be
zero [Appendix A(1)]. This involves the calculation of sup HÄ with respect to Z and use of the fact that
vZv=1 cannot hold on all of [0, 1]. Second, the value 0 for the nonnegative scalar Lagrange multiplier l0
is ruled out by showing that all multipliers would then be zero simultaneously [Appendix A(2)]. Take
l0=1 from here on. Third, return to ®nding sup ~H with respect to a(x ) to show that the optimal a(x )
and so the optimal Z(x ) must be continuous [Appendix A(3)]. Fourth, the case when a(x ) is constant for
the whole rod is solved [Appendix A(4)], agreeing with the elementary result discussed at the beginning
of this Section when a(x ) is at its minimum value. Finally, in Appendix A(5), the case when vZv=1 over
part of the interval is treated leading to the optimal design
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a��x� �

8>>>>>>>>><>>>>>>>>>:

exp

�
ÿ g

�
xÿ 1

2

�
ÿ 1

�
, 0RxR1

2
ÿ 1

g
;

1,
1

2
ÿ 1

g
RxR1

2
� 1

g
;

exp

�
� g

�
xÿ 1

2

�
ÿ 1

�
,

1

2
� 1

g
RxR1

�18�

valid for 2R gR 2+2 ln(aÃ ). The upper bound is the value of g where a�(0) and a�(1) become aÃ.

3. Minimum potential energy for ®xed volume

The second design problem is the minimization of the potential energy functional (3) subject to the
constraints (6)±(8). This problem is also more easily treated if it is cast in a nondimensional
formulation. Replace the quantities {X, A, U, D, E, P} by {x, a, u, d, Z, p }, respectively, where

X � Lx, A�X � � Âa�x�,

U�X � � rgL2

E
u�x�, A�X �D � rgL2

E
d,

E�X � � rgL2

E
Z�x�, A�X �P � r2g2L3Â

E
p:

The quantity Â used to nondimensionalize the area function may be taken to be one of the bounds A1,
A2 or the constant area A0=V0/L that gives the prescribed volume; the most useful choice seems to be a
weighted harmonic mean of the bounds:

Â
ÿ1 � x1A

ÿ1
1 � x2A

ÿ1
2 ,

x1 �
A2 ÿ A0

A2 ÿ A1
, x2 �

A0 ÿ A1

A2 ÿ A1
: �19�

This choice is suggested by the solution process itself and is another connection to Fosdick and Royer-
Carfagni (1996), where such a choice occurs in the construction of the lower convex envelope of the
strain energy density.

The design problem is then the minimization of

p�u, a, Z� �
�1
0

a�x�
�
1

2
Z2�x� ÿ u�x�

�
dx �20�

with respect to u, a, and Z subject to the constraints

du

dx
� Z�x�, �21a�

u�0� � 0, u�1� � d, �21b�
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�1
0

a�x�dx � a0, �21c�

f1 � a1 ÿ aR0, f2 � aÿ a2R0 �21d�
where {a0, a1, a2}={A0, A1, A2}/AÃ, 0< a1< a0< a2, and using (19)

x1a
ÿ1
1 � x2a

ÿ1
2 � 1

x1 �
a2 ÿ a0
a2 ÿ a1

, x2 �
a0 ÿ a1
a2 ÿ a1

: �21e�

The regularity condition [Hestenes, 1980, p. 260, Eq. (4.2)] on the constraint functions fk is
satis®ed since the nontrivial 2-by-2 minors of the 2-by-4 regularity matrix cannot all be zero
simultaneously.

This problem can also be solved using the Maximum Principle. The state function is u(x ) and the
controls are Z(x ) and a(x ). If there exists a minimizer {u�(x ), Z�(x ), a�(x )} of the functional (20)
satisfying the constraints (21) with u� continuous with piecewise continuous derivatives and Z�, a�

piecewise continuous on [0, 1], then there exist multipliers

l0r0, l, p�x�, m1�x�, m2�x� �22a�
not vanishing simultaneously on the closed interval 0 R x R 1 and a `pre-Hamiltonian' function H(u, p,
Z, a, m1, m2) de®ned by

H � pZÿ l0a
�
1
2Z

2 ÿ u
�
ÿ laÿ m1f1 ÿ m2f2 �22b�

such that the following conditions hold.

1. The multipliers m1(x ), m2(x ) are continuous on each interval of continuity of Z�(x ), a�(x ). Moreover,
they are nonnegative. Each is zero wherever the corresponding fa function Eq. (21) is strictly less
than zero.

2. The multiplier p(x ) is continuous and satis®es, with u�(x ), Z�(x ), a�(x ) and the two m's, the given
di�erential equation constraint (21)

du

dx
� @H

@p
� Z�x� �23a�

and the additional equations

dp

dx
� ÿ@H

@u
� ÿl0a�x� �23b�

@H

@Z
� pÿ l0aZ � 0 �23c�

@H

@a
� m1 ÿ m2 ÿ lÿ l0

�
1

2
Z2 ÿ u

�
� 0 �23d�

on each interval of continuity of Z�(x ), a�(x ).
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3. The function H evaluated on a minimizer is continuous on the closed interval 0 R x R 1 and satis®es
the relation

dH

dx
� @H

@x
� 0 �24�

on each interval of continuity of Z�(x ), a�(x ).
4. The inequality

H�u�, p�, Z, a, 0, 0� � p�Zÿ l0a�12Z2 ÿ u�� ÿ laRH�u�, p�, Z�, 0, 0� � sup H � �H �25�
holds for all admissible controls Z(x ) and a(x ) on the left side and for u�(x ), Z�(x ), a�(x ), together
with the solution values of the multipliers p�(x ), l0, l on both sides of (25). The constant H

-
is the

value of the supremum of H guaranteed by the result Eq. (24) since the H function does not depend
explicitly on x. Since the boundary values on u(x ) are given at both ends of the rod, there are no
boundary conditions on p(x ) arising from the standard transversality relations.

As in Section 2, the left side of the Maximum-H inequality is replaced by the related function

~H�a, Z� � p�x�Zÿ a�12Z2 ÿ u�x�� ÿ la �26�
and its supremum is sought with respect to the controls regarding the other quantities as known. There
are four steps in the construction of the global optimizer for all values of the parameters a1, a2, and d.
First, the value 0 for the nonnegative scalar Lagrange multiplier l0 can be ruled out by showing that all
multipliers would then be zero; therefore l0=1 from here on [Appendix B(1)]. The multiplier function
p(x ) can then be identi®ed with the nondimensional axial force since the governing Eqs. (23b) and (23c)
become the force equilibrium equation and the elasticity law when l0=1. The optimal choice of the
strain Z(x ) is then p/a for each choice of a(x ). Second, completing the calculation of sup ~H with respect
to a(x ) shows that the optimal a(x ) must be discontinuous and consist of intervals either at a1 or at a2
[Appendix B(2)]. Satisfying the volume constraint tells us that the total length (measure) of the intervals
at a1 and of those at a2 must be x1 and x2 as given in (21e). Therefore, the optimal design must consist
of at least two segments. Third, Eqs. (23a), (23b), and (23c) can be solved for any constant-section
segment and the value of H shown to be a constant necessarily in any such segment. These results
together with continuity of u(x ) and p(x ) at the joins between segments are used to prove that no design
with alternating segments of two constant sizes can be optimal if there are four or more segments
[Appendix B(3)]. This leaves two designs of three segments each together with the two with two
segments as the candidate optimizers. Finally, in Appendix B(4), by comparison of the H

-
values for the

four candidates and their associated multiplier functions m(x ) and evaluation of the potential energy
functional p, one establishes the following.

Proposition. If vdv < d1=x1/2a1, then the three-region design with a(x )={a1, a2, a1} in intervals of
lengths {a1d+x1/2, x2, ÿa1d+x1/2} is the sole optimal design. If d r d1, then the two-region design
a(x )={a1, a2} with lengths necessarily {x1, x2} is optimal. If d R ÿd1, then the two-region design
a(x )={a2, a1} with lengths necessarily {x2, x1} is optimal. An optimal three-region design {a1, a2, a1}
does not exist for vdvrd1 whereas the candidate three-region design {a2, a1, a2} cannot be optimal for
any value of d.

These results agree with those of Fosdick and Royer-Carfagni (1996).
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Appendix A

Calculations for the minimum volume problem

1. The optimal value of v(x ) is zero: From the ®rst of Eqs. (13b), the dual function v(x ) must be a
constant v�. If that constant is nonzero, choosing Z equal to sign (v ) will make HÄ in Eq. (17) as large
as possible without violating the constraints on Z. But if Z is a constant other than zero, then [from
(13a)] u(x ) would be linear in x and both boundary conditions on u could not be met. Thus, zero is
the only possible value for v=v� and Z no longer appears explicitly in HÄ . Indeed we see that the
boundary conditions on u require that the solution Z(x ) have integral zero over the rod length.

2. The value of l0 cannot be zero and so can be taken as 1: Since v must be zero then if l0 is also zero
HÄ would reduce to its last term: HÄ=ÿgqa. This will be maximised when q>0 if a=1 and when q<
0 if a � â: Since sup ~H must be constant and a(x ) is constant, q must be of one sign and constant.
But q = 0 is the only constant satisfying the boundary conditions (16), and then sup ~H is zero.
More, from (13b), (13c) and (13d) we would ®nd m5=0, m1=m2, m3=m4. But m1=m2, m3=m4 can hold
only if all are zero; and so all eight multipliers would be simultaneously zero, which is not allowed.
Therefore l0 cannot be zero. Once l0 is known to be positive, it can be taken as a multiplicative
scaling factor for the other multipliers and so for the function H; it su�ces to set l0=1.

3. Continuity of the optimal design: Set v = 0 and l0=1 in HÄ and in turn set the latter equal to the
constant value H

-
which is yet to be found. The optimal design must satisfy a(x )=ÿH-/(gq(x )+1) and

so be continuous on [0, 1] along with u, p, and q. The strain Z(x )=p/a must also then be continuous.
4. The optimal design for g R 2: A solution with a(x ) constant for the whole interval requires q(x ) also

constant from H
-
=ÿa(gq+ 1). q= 0 is the only value that satis®es the boundary conditions on q. If

q = 0 so is m5 from (13b) and, from (13c), m1ÿm2=1. Since these last two ms cannot be nonzero
together and one must be nonzero and positive, the only possibility is for m1=1, m2=0. The optimal
choice of a(x ) must be the lower bound 1. This is just the solution found above by direct
considerations at the start of Section 2. The remainder of the functions p, Z, and u can now be found:

p�x� � m�x� � 1
2 ÿ x, u�x� � 1

2x�1ÿ x�:
The limiting value g=2 comes from setting vZv=1 at x = 0 and 1. Note that the value of H

-
for this

solution is ÿ1.
5. The optimal design for g > 2: When g > 2 one must consider the other possibility that vZv=1 over

parts of (0, 1) so that from (11) p(x )=2 a(x ) there. It follows that a(x ) must be proportional to
exp[ÿgx ] where Z=+1 and to exp[+gx ] where Z=ÿ1. Since p is continuous, intervals these two
types cannot be adjacent but must be separated by an interval where a(x ) is constant and where Z
changes continuously from +1 to ÿ1. The sole zero of p(x ) and of Z(x ) must lie in this interval.
Moreover, any regions with Z=+1 must occur at the top of the column and any with Z=ÿ1 must be
at the bottom.

It is not hard to show that two-region candidates with a constant-section region followed by an Z=ÿ1
region or an Z=+1 region followed by a constant-section region cannot occur. This is done by tracing
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the q(x ) function (necessarily zero if a(x ) is constant near either end of the column) and showing that
the location of the join between the two regions would be at the other end of the rod such that no
variable section could occur. The ®rst candidate then is a three-region design with Z=+1 for 0 < x < x̂;
a=a0 for x̂ < x < ~x; and Z=ÿ1 for ~x < x < 1, where the constant value a0 must be determined (and
will turn out to be the minimum value 1). Optimal designs with higher numbers of intervals cannot exist
since the continuous functions p and Z are monotone decreasing.

It is a straightforward if somewhat tedious task to integrate the equations in each region and from
continuity conditions as the join points xÃ, xÄ determine the values

x̂ � 1

2
ÿ 1

g
, ~x � 1

2
� 1

g

and the other constants of integration. The resulting optimal design a�(x ) is given in Eq. (18). It is
symmetric about the midpoint x=1/2. The remaining quantities u(x )=Z(x ), p(x ), and q(x ) are

u�x� �

8>>>><>>>>:
x

g
2
x�1ÿ x� ÿ �gÿ 2�2

8g

1ÿ x

; Z�x� �

8>>><>>>:
1

g

�
1

2
ÿ x

�
ÿ1

;

p�x� �
8<: a��x�

Z�x�
ÿa��x�

; q�x� �

8>>>>>>>><>>>>>>>>:

ÿ1
g
�1ÿ exp�gx��

ÿ1
g
�1ÿ exp�gÿ 2

2
��

ÿ1
g
�1ÿ exp�g�1ÿ x���

:

Moreover, the multipliers mk (x ) and the constant H
-
can be found; the multipliers that must be positive

in each interval are indeed positive:

0 < x < x̂: m1 � m2 � m3 � 0, m4 � ÿm5 � exp

�
gÿ 2

2

�
> 0;

x̂ < x < ~x: m2 � m3 � m4 � m5 � 0, m1 � exp

�
gÿ 2

2

�
> 0;

~x < x < 1: m1 � m2 � m4 � 0, m3 � m5 � exp

�
gÿ 2

2

�
> 0;

�H � ÿexp

�
gÿ 2

2

�
:

Note that the value of H
-
is less than the value of ÿ1 found for the H

-
of Section 2 for the rod of

uniform section. Thus the solution found here would not be optimal if the uniform rod satis®ed all the
constraint conditions for g>2.
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This solution exists for all g > 2, with the division points x̂, ~x moving in from the ends toward the
midpoint as g approaches in®nity. The limitation on the range of g arises from the upper bound
constraint on a(x ). For the maximum a at either end of the bar to remain less than â, we must have
gx̂ � �gÿ 2�=2 < ln�â� or

2 < g < 2� 2 ln�â�
for the solutions with three regions to exist.

We must rule out the possibility of a higher number or regions, with more than one constant-Z and
constant-a regions alternating on each side of a central one with uniform section. The argument given
above for the constant-a design being equal to the minimum section size wherever a and q are constant
still holds, however, so that one could not have an exponentially decaying section with Z=+1 to the
right of a uniform section at a = 1 or an exponentially growing section to the left of such a section
without violating the lower bound constraint on a(x ). Together with the monotone character of p(x )
and Z(x ), this shows that we cannot have more than three regions. Thus we have a unique optimizer in
each g interval where solutions exist with no solution possible for g > 2� 2 ln�â�:

The total volume for this optimal design is�1
0

a��x�dx � 2

g
exp

�
g
2
ÿ 1

�
which is greater than one when g> 2. For example, if â is greater than the number e so that g=4 is an
allowable value, one ®nds that the minimum volume is e/2 or nearly 36% higher than the volume for g
R 2.

Appendix B

Calculations for the minimum energy problem

1. The value of l0 cannot be zero and so can be taken as 1: If l0 were zero, p(x )=0 from Eq. (23c).
Suppose l is not zero. If it were positive (negative) than m1ÿm2 would need to be positive (negative)
from (23d). Since the ms must be nonnegative and cannot be nonzero at the same place, then either m1
> 0 or m2 > 0 along the whole rod. This would require that either a=a1 or a=a2. But the volume
constraint cannot then be met. Therefore l must be zero and m1=m2. Since f1 and f2 cannot be zero
together, the only way the ms can be equal is if they are both zero. Then all ®ve multipliers would be
zero simultaneously, which is not allowed by the Principle. Thus, l0 cannot be zero and can be taken
to be 1.

2. The optimal a(x ) must be piecewise constant: Maximise

~H�a, Z� � p�x�Zÿ a�12Z2 ÿ u�x�� ÿ la �B1�
with respect to a, Z treating p(x ) and u(x ) as known. The ®rst and second Z derivatives of the
function in (B1) are pÿaZ and ÿa. The ®rst derivative vanishes (Eq. (23c) again) at

Z � p=a �B2�
while the second derivative is always negative, indicating a relative maximum. Substituting this value
of Z back into (B1) we obtain the intermediate function H� of a:
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H ��a� � ~H�a, p=a� � � p�
2

2a
� a�uÿ l�: �B3�

We now seek the supremum of the latter subject to the inequality constraints on a.
Since the second derivative of H� with respect to a is the always non-negative expression

@2H �

@a2
� p2

a3

the supremum of H� does not occur where the ®rst derivative is zero but at one of the end points
a=a1 or a=a2. Since neither can be extended over the whole length and still satisfy the volume
constraint, there must be at least two segments in any admissible design consisting of just these two
values for a(x ). The value or values of x where switching from one size to the other occurs, become
quantities that must be found.

To satisfy the volume constraint the total lengths (measures) x1 and x2 at each of the bounds must
satisfy

x1 � x2 � 1, a1x1 � a2x2 � a0 �B4a�

and so be

x1 �
a2 ÿ a0
a2 ÿ a1

, x2 �
a2 ÿ a1
a2 ÿ a1

: �B4b�

A useful identity for later work is obtained by substituting the last forms for the xs back into the
harmonic mean identity of Eq. (21e) and rearranging:

a2 � a1 ÿ a0 � a1a2: �B4c�
3. The solution forms for segments of constant section; proof that no design with four or more regions

can be optimal: For any segment of the rod in which a(x ) is constant, the solutions p(x ) and u(x ) to
the equations for the elastic problem are linear and quadratic in x, respectively. For a(x )=aa, a=1,
2,

p�x� � aaZ�x� � p0 ÿ aa�xÿ x0�

u�x� � u0 � p0
aa
�xÿ x0� ÿ �xÿ x0�2

2
�
 

p20
2a2a
� u0

!
ÿ p2�x�

2a2a
� Ea

aa
ÿ p2�x�

2a2a
�B5�

where x0 is an arbitrarily chosen point of the segment, p0 and u0 are the values of the force and
displacement there, and the `energy constant' Ea has been introduced. It is easily seen that the value
of Ea is independent of the choice of x0. The value of the Hamiltonian function needed in the
Maximum Principle inequality will be constant where a(x ) is constant:

H�u�x�, p�x�, aa, Z�x�, 0, 0� � aa

�
1

2
Z2�x� � u�x� ÿ l

�
� p20

2aa
� aa�u0 ÿ l� � Ea ÿ laa: �B6�

For a sequence of segments in which a alternates between 1 and 2, all can be made to have the same
constant Hamiltonian value H

-
. Moreover, the value of Ea is the same for all segments where a=aa.

Setting the H-function for the two types of regions equal to one another gives
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l � E2 ÿ E1

a2 ÿ a1
,

�H � a2E1 ÿ a1E2

a2 ÿ a1
� x1E1 � x2E2 ÿ la0: �B7�

An additional useful form of H
-
that leads directly to the result that there cannot be more than three

segments in an optimal design is obtained by taking the reference point x0 for two neighboring
segments at the join x � ~x between them and using the common nodal values ~p and ~u there in the
`energy' constants Ea. Then

l � ~uÿ ~p2

2a1a2
, x1E1 � x2E2 � a0 ~u� ~p2

2
,

�H �
�
1� a0

a1a2

�
~p2

2
� �a1 � a2�

2a1a2
~p2 �B8�

where the identity of (B4c) has been used in the last line.
From this it follows immediately that no more than three segments are possible in an optimal

design. Since H
-
must be constant for an optimizer the value ~p2 must be the same at all joins between

segments of di�erent sizes. Since p(x ) is a continuous monotone decreasing function, it can take on
each of its values only once. Thus, if there is a second join the value there of p(x ) must be negative
of that at the ®rst join and there can be no further occurrences of the square of that value. It also
follows that if there are three segments the value of p(x ) at the midpoint of the middle segment must
be zero and that the length of that segment will be xa if its size is aa, with the value ~p at the top join
equal to aaxa/2.

The forms of the multiplier functions which must be positive if a design is to be optimal are
obtained from the equation @H/@a=0 [Eq. (13)]:

m1�x� ÿ m2�x� � l� 1
2Z

2�x� ÿ u�x�:

Therefore, using (B6), where a=a1, m2 must be 0 and

m1�x� � lÿ E1

a1
� p2�x�

a21
� p2�x�

a21
� p2�x�

a21
ÿ

�H

a1
�B9a�

must be positive for optimality and, where a=a2, m1=0 and

m2�x� � ÿl�
E2

a2
ÿ p2�x�

a22
�

�H

a2
ÿ p2�x�

a22
�B9b�

must be positive for optimality.
The contribution of a segment with a(x )=aa to the additive functional p is also easily calculated.

Let {xÿ, x+} denote the endpoints of the segment and set x+ÿxÿ=z, the length of the segment.
Then the potential energy of the segment is�x�

xÿ
aa

�
1

2
Z2�x� ÿ u�x�

�
dx �

�x�
xÿ

�
p2�x�
aa
ÿ Ea

�
dx � p3�xÿ� ÿ p3�x��

3a2a
ÿ Eaz: �B10�
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4. The four candidate optimizers; selection of the global optimizer: Next list the candidates. Choose the
reference points x0 of Eqs. (B5) for the top and bottom segments to be at x = 0 and x = 1,
respectively, and for the middle segment in the three-region designs at its midpoint x̂: Call the force
values at the top and bottom of the rod p� and p ��, respectively. For the three-region designs, the
midpoint strain p̂ � 0; see the discussion after Eq. (B8). Call the displacement there û: The four
di�erent candidates will be distinguished where necessary by Roman numeral superscripts I, II, III,
and IV, where I is the two-region candidate with a(x )={a1, a2}, II is the two-region candidate with
a(x )={a2, a1}, III is the three-region candidate with a(x )={a1, a2, a1}, and IV is the three-region
candidate with a(x )={a2, a1, a2}.

The solutions for Cases I and II exist for all values of the end displacement d. For I, the results of
the calculation for the end forces and for the displacement and force at the join ~x � x1 are

p� � d� d̂� x2
a2

a0, p�� � d� d̂ÿ x1
a1

a0,

~u � u� ~x� � x1
a1

�
dÿ d̂� a1x1

2

�
, ~p � p� ~x� � dÿ d̂ �B11�

where

d̂ � x1 ÿ x2
2

: �B12�

To derive these results the identities Eqs. (21e, B4) involving the as and xs have been used, as they
must often be to simplify the calculations that follow. We also need the values of H

-
, m(x ), and p

quantities for Case I which are obtained using the general results in Eqs. (B8)±(B10):

�H
I�d� � �a2 � a1�

2a1a2
�dÿ d̂�2 �B13a�

mI�x� �

8>>>>><>>>>>:
� p� ÿ a1x�2

a21
ÿ

�H
I

a1

�H
I

a2
ÿ � p

�� ÿ a2�xÿ 1��2
a22

�B13b�

pI�d;a1a2� � 1

2
�dÿ d̂�2 ÿ a2x2�dÿ d̂� � a1x

3
1 � a2x

3
2

3
ÿ a0x

2
1

2
: �B13c�

For Case II, which also exists for all values of d, the join point is at ~x � x2: It is easy to show that
the results for Case II may be computed from those for Case I by making the substitution of 1ÿx for
x and ÿd for d. One ®nds

uII�x;d� � uI�1ÿ x;ÿ d� � d: �B14�
The H

-
, m(x ), and p quantities for Case II are

�H
II�d� � �H

I�ÿd� � �a2 � a1�
2a1a2

�d� d̂�2 �B15a�
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mII�x, d� � mI�1ÿ x, ÿ d� �

8>>>>><>>>>>:
�H

II

a2
ÿ � p

II�x��2
a22

� pII�x��2
a21

ÿ
�H

II

a1

�B15b�

pII�d;a1, a2� � pI�ÿd;a1a2� ÿ a0d � 1

2
�d� d̂�2 ÿ a1x1dÿ

a1x
3
1 � a2x

3
2

6
: �B15c�

To construct the candidate extremals with three regions, ®rst ®nd the lengths of the top and
bottom segments. The length z2 of the middle segment is necessarily x2 for Case III and x1 for Case
IV. Call the length of the top segment z1 and that of the bottom z3; z1+z3 equals x1 for Case III and
x2 for Case IV. The switching points between segments are at x � ~x1 � z1 and x � ~x2 � 1ÿ z3: From
the discussion after (B8) the values of p and u at the switching points are

~p1 � ÿ ~p2 �
a2x2
2

�Case III�; � a1x1
2

�Case IV�;

~u2 � ~u1 � ûÿ x22
8
�Case III�; � ûÿ x21

8
�Case IV�: �B16�

Now formulate the force relations between the ends of each of the top and bottom segments and the
displacement boundary conditions at x= 0 and x= 1. For Case III, using the equality of the Es for
the top and bottom segments in an optimal design, one ®nds

z1 �
x1
2
� a1

a0
d, z3 �

x1
2
ÿ a1

a0
d �B17a�

with a similar calculation for Case IV resulting in

z1 �
x2
2
� a2

a0
d, z3 �

x2
2
ÿ a2

a0
d: �B17b�

From these we see that three-region candidates can exist only for a range of values of d. The
vanishing of the zs gives III and IV existing only for

j d j< d1 � a0x1
2a1

�Case III�

j d j< d2 � a0x2
2a2

�Case IV�: �B18�

Now construct the solutions for III and IV. For III, the results for end forces and the displacement at
x̂ will be

p� � a0
2
� a21d

a0
, p�� � ÿa0

2
� a21d

a0
�B19�
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û � a21
2a20

d2 � 1

2
d� 1

8

�
x22 ÿ x21

�
� a0x1

4a1
: �B20�

The H
-
, m(x ), and p quantities for Case III are:

�H
III � a2�a2 � a1�z22

8a1
�B21�

mIII�x� �

8>>>>>>>>>><>>>>>>>>>>:

� pIII�x��2
a21

ÿ
�H

III

a1

�H
III

a2
ÿ �xÿ x̂�2

� pIII�x��2
a21

ÿ
�H

III

a1

�B22�

p�d;a1, a2� � pIII�0;a1, a2� ÿ a0
2
d� a21

2a0
d2 �B23a�

where

pIII�0;a1a2� � a1x
3
1 � a2x

3
2

12
ÿ a0x

2
1

8
ÿ a22x

2
2

8
: �B23b�

For Case IV, the solution is obtained by interchanging subscripts 1 and 2 on the as and xs in the
Case III solution. The ®rst result is that IV is not the global optimizer at any value of d. This is
found by evaluating the multiplier function m IV(x ) at the midpoint x̂IV � 1

2 � �a2=a0�d and seeing that
it must always be negative:

mIV�x IV
M� � ÿ

�H
IV

a1
� ÿ�a2 � a1�

8a2
x21: �B24�

The second result is that the multiplier function m III(x ) is positive in each of its intervals of
continuity for all d for which III exists. This follows easily by considering the graph of m III(x ) which
consists of three parabolic pieces, opening upward for x in the top and bottom regions and
downward in the middle. The minimum values for each part are the values at the joins and these are
all positive.

We must next compare the two-region candidates to III. From di�erences of H
-
values it is not

hard to show that I has a higher H
-
value than III when d> d1 (where in fact candidate III no longer

exists) and similarly II has a higher values than III when d < d1. In vdv < d1, III has the highest H
-

value of the three if d̂ � �x1 ÿ x2�=2 < 0: If d̂ > 0, an ambiguity arises that cannot be settled by an
appeal only to the positivity of the corresponding m(x ) functions. A more detailed argument based on
the supremum inequality itself could be given but is not needed since the values for the energy
functions can be compared directly. Some algebra will show that

pI�d;a1, a2� ÿ pIII�d;a1, a2� �
�
1

2
ÿ a21

2a0

�
�dÿ d1�2r0: �B25�
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pII�d;a1, a2� ÿ pIII�d;a1, a2� �
�
1

2
ÿ a21

2a0

�
�d� d1�2r0: �B26�

pII�d;a1, a2� ÿ pI�d;a1, a2� � 2d1d: �B27�
Therefore, III has lower energy than I or II whenever III exists; Case I has lower energy than II for d
> 0 and II than I when d < 0. This completes the proof of the proposition at the end of Section 3
for all ranges of d.
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